Event-driven Multi-Agent Concurrent and Collaborative
Coordination

Pedro Acevedo
Department of Computer Science
University of North Carolina
Wilmington
Wilmington, North Carolina, USA
acevedop@uncw.edu

Fengze Zhang
School of Applied and Creative
Computing
Purdue University
West Lafayete, Indiana, USA
zhan5455@purdue.edu

Christos Mousas
School of Applied and Creative
Computing
Purdue University
West Lafayette, Indiana, USA
cmousas@purdue.edu

Figure 1: Event-driven behavior tree (EDBT) agents interact within the simulation to complete a moving task. (1) Agent 1 is
pressing a button to open the door separating Room A and Room B. (2) Agent 2 has grabbed a box that needs to be placed at its
final destination in Room B. (3) Agent 3 has sent a request for assistance to move a large object. (4) Agent 4 has received the

message and is preparing to help Agent 3 complete the task.

Abstract

Multi-agent systems (MAS) model the interaction of multiple au-
tonomous agents within a shared environment to achieve a common
goal. These agents operate independently, considering the output
of other agents to make decisions that contribute to the simula-
tion’s objectives. MAS can create dynamic and nondeterministic
simulations where agents must adapt and collaborate to optimize
task completion. Coordination in MAS remains an open challenge,
requiring effective strategies that account for agent behaviors, en-
vironment interactions, and overall objectives. Building on prior
work in behavior tree (BT) coordination (Coord-EDBT) and the
smart objects paradigm, we present a simulation approach that
enables agents to use a messaging protocol for sending and receiv-
ing requests, facilitating collaborative task execution. We validate
our system through a collaborative moving task in which multiple
agents transport objects from Room A to Room B. We described our
implementation, including behavior trees, environment settings,

This work is licensed under a Creative Commons Attribution 4.0 International License.
VRCAI 25, Macau, China

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2362-9/25/12

https://doi.org/10.1145/3779232.3779273

and object interactions, and illustrated its capabilities through mul-
tiple examples. An initial evaluation revealed that the request-based
communication mechanism enhanced agent collaboration, support-
ing more effective coordination in dynamic simulation environ-
ments. Our system and demos can be found at [URL is omitted due
to double-blind review process].

CCS Concepts

« Computing methodologies — Multi-agent systems; Anima-
tion.

Keywords

Multi-agent Systems, Behavior Tree, Coordination, Simulation, Au-
tonomous Agents

ACM Reference Format:

Pedro Acevedo, Fengze Zhang, and Christos Mousas. 2025. Event-driven
Multi-Agent Concurrent and Collaborative Coordination. In The 20th ACM
SIGGRAPH International Conference on Virtual-Reality Continuum and its
Applications in Industry (VRCAI °25), December 13—14, 2025, Macau, China.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3779232.3779273


https://orcid.org/0000-0003-0814-7675
https://orcid.org/0009-0002-6797-3862
https://orcid.org/0000-0003-0955-7959
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779232.3779273
https://doi.org/10.1145/3779232.3779273

VRCAI ’25, December 13-14, 2025, Macau, China

1 Introduction

Multi-agent systems (MAS) have been a topic of research interest
due to their potential for modeling distributed autonomous enti-
ties [Amirkhani and Barshooi 2022; Chen et al. 2023; Gronauer
and Diepold 2022; Viqueira and Cousins 2019]. A MAS is a system
of multiple distributed agents that make decisions autonomously
based on a set of predefined actions and interact within a shared,
partially controlled environment [Weiss 1999]. These agents aim
to achieve specific goals using intelligent and reactive behaviors.
When agents operate within dynamic and nondeterministic simu-
lations, coordination and collaboration become essential [Shoulson
et al. 2013]. Applications of MAS span various domains, including
non-player character (NPC) behavior in games [Agis et al. 2020], au-
tonomous driving [Shalev-Shwartz et al. 2016], social roles [Zhang
et al. 2019], and robotics [Aloor et al. 2024]. Exploring how to
coordinate MAS highlights its relevance for future applications,
integrating these agents. Depending on the system’s objectives,
various techniques can be used to model agent behavior. These
include decision-making algorithms, reinforcement learning, and
behavior trees (BTs) [Iovino et al. 2022]. Equally important is the
role of the environment, which imposes constraints such as physics,
motion, and object interactions [Albrecht et al. 2024]. Among these
techniques, BTs provide a structured approach for defining agent
behavior, serving as a “control block that guarantees the execution of
a specific chain of actions given a specific set of perceptions” [Pereira
and Engel 2015]. Initially developed for the video game industry as
an alternative to finite state machines (FSMs), BTs have since been
applied in robotics, control theory, and general agent modeling.
Unlike learning-based approaches, BTs ensure reliability, as agents
execute behaviors exactly as designed by experts. Additionally, BTs
facilitate the construction and maintenance of complex models
while preserving readability.

In MAS, behavior modeling techniques face additional challenges
due to agents sharing an environment and resources [Dorri et al.
2018]. The need for coordination arises because agents must con-
sider the actions of other agents when making decisions, thereby
increasing complexity and potentially causing conflicts. Without
coordination mechanisms, MAS can become unmanageable. Several
approaches have been developed to address this issue [Albrecht
et al. 2024; Lowe et al. 2017; Shang et al. 2023; Wang et al. 2016].
Specifically, utilizing BTs, Agis et al. [Agis et al. 2020] developed
an extension called Coord-EBT. Their method included a messag-
ing protocol by integrating new types of nodes for coordination.
The nodes enabled agent communication through a request proto-
col. Building on this work in coordination [Agis et al. 2020] and
smart objects paradigm [Abaci et al. 2005], we designed a simu-
lation using BT-driven agents that collaborate on a common task.
We incorporated smart objects with properties such as concur-
rency, goal constraints, preconditions, and state changes to enrich
the simulation environment. We validate our framework using a
collaborative moving task, where multiple agents must transport
objects from room A to room B (see Figure 1). Some objects require
multiple agents to move (e.g., a large object), while others depend
on specific preconditions (e.g., opening a door between rooms).
All agents shared the same event-driven behavior tree (EDBT) to

Pedro Acevedo, Fengze Zhang, and Christos Mousas

operate within the simulation. Overall, our contributions are the
following:

o we designed a multi-agent simulation integrating an existing
BT extension and smart objects for dynamic coordination
environments;

e we introduced smart objects with properties such as con-
currency and preconditions to enhance complex simulation
scenarios; and

e we evaluate our system through multiple example scenarios,
demonstrating how agents coordinate to complete a moving
task.

We organized our paper as follows. In Section 2, we discuss work
related to our project. In Section 3, we present the background of
our EDBT, Coord-EBT, and smart objects paradigm. In Section 4,
we detail the methodology for integrating Coord-EBT with smart
objects to handle multi-agent scenarios that demand collaboration
and agent-object interactions. In Section 5, we present various sim-
ulated moving task scenarios to empirically validate the proposed
MAS. In Section 6, we present the evaluation of the proposed ap-
proach. Last, in Section 7, we conclude and discuss potential future
directions.

2 Related Works
2.1 BT-driven Agents

BTs allow agents to handle complex interactions while maintain-
ing scalability and reusability. Beyond gaming, BTs have been ex-
tended for diverse use cases [lovino et al. 2022]. Liu et al. [Liu
et al. 2023] used BT-driven Al agents to annotate game-level col-
laboration degrees for synthesizing a virtual reality experience.
Zhang et al. [Zhang et al. 2021] employed BTs to simulate agents
for workspace and workplan optimization, including use cases such
as a fast-food kitchen and a supermarket. Regarding the extension
of BTs, Neupane and Goodrich [Neupane and Goodrich 2019] com-
bine the BT with a grammatical evolution approach to model the
behavior of different swarms of agents, thereby replicating animal
behavior. Johansson and Dell’Acqua [Johansson and Dell’Acqua
2012] extended BT to reactively adapt actions based on emotions,
considering factors such as time-discounting, risk perception, and
planning. In robotics, Colledanchise et al. [Colledanchise et al. 2019]
developed a planning approach to automatically create and update
a BT, enabling the control of a robot in a dynamic environment.
BT research has focused on creating extensions to enable vari-
ous possible agent behaviors, such as coordination with multiple
agents [Agis et al. 2020], parallel actions [Colledanchise and Natale
2018], and learning methods [Colledanchise et al. 2014; Sprague
and Ogren 2022]. In this work, we adopted an extended version
of BTs to model agent behavior and defined a specific action set
that enables collaborative interactions among agents to achieve a
shared goal.

2.2 Multi-Agent Systems

MAS can be applied to multiple real-world scenarios, considering
how multiple agents/actors interact with each other to accomplish
the same goal. Researchers have focused on performing and model-
ing the complex task of agent coordination in different fields. For



Event-driven Multi-Agent Concurrent and Collaborative Coordination

6O

o0

7
CHECKMAILBOX

6O

N
PICKATASK

VRCAI ’25, December 13-14, 2025, Macau, China

|

B
}

@

@

| MoveToTask T | ObjectlnteractionT

ButtonInteraction

®

RequestHandler RequestHandler
type: “open-door” type: “help-to-move”
not @

blackboard[“request”].
IsNotInProgress ()

| o
i

| DropTask

DropTask \T’

Figure 2: The agent’s EDBT. The nodes are represented as rectangles and symbols at the top-right corner, indicating the type of
node. Service nodes are represented by an infinity (c0) symbol, selection nodes with question marks, and leaf action nodes by a
star (x). The gray background rectangles represent a blackboard observer decorator (BOD) node proposed by Agis et al. [Agis

et al. 2020].

instance, Shoulson et al. [Shoulson et al. 2013] designed an event-
centric planning framework based on BTs for directing interactive
narratives in complex 3D environments populated by virtual hu-
mans. Their approach demonstrated agent coordination in a prison
break scenario, where agents assumed roles such as robbers and
police. Agis et al. [Agis et al. 2020] proposed Coord-EBT, a method
for agent coordination based on BTs. They included a messaging
protocol that allows agents to send requests to complete multiple
collaborative tasks in a simulation environment. Their implemen-
tation demonstrated how agents could collaborate as firefighters
to extinguish fires. Shang et al. [Shang et al. 2023] proposed a rein-
forcement learning approach for agent collaboration tasks using a
constraint-based method. Their approach divides the policy into
phases, each treated as a constraint to guide the task objective.
They validate their method using a tray-balancing task, where two
agents must first coordinate to keep the tray stable (Phase 1) and
then work together to place a moving target at its final destination
(Phase 2). Liu et al. [Liu et al. 2019] investigated the emergence of
cooperative behaviors in multi-agent competitive environments
using a population-based reinforcement learning approach. They
implemented a two-versus-two soccer simulation, where agents
compete in groups to score goals. The agents were controlled using
physics-based motions, including forward and backward movement,
rotational torque, and jumping forces. Their methods demonstrated
how agents develop coordinated strategies in response to com-
petition, highlighting the potential for emergent collaboration in
reinforcement learning settings. In this work, we adopt the BT
approach, specifically leveraging the Coord-EBT framework. We

define multiple collaborative tasks in which agents must commu-
nicate to achieve their goals, thereby facilitating coordination in
dynamic simulation environments.

3 Background
3.1 Event-driven Behavior Tree

An EDBT is a directed tree that encapsulates agents’ actions sorted
on sequence and conditions. EDBT extends traditional BT by incor-
porating event-based mechanisms, allowing nodes to be triggered
by external or internal events instead of being executed in a fixed
order [Champandard and Dunstan 2019]. The tree’s root represents
the starting point of executions; those executions or signals are
denominated Ticks, which are called on a specific frequency. These
Ticks are propagated on the tree, enabling the execution of the
actions in each of the children’s nodes, starting from the most left-
side node. A node will be only executed when receiving Ticks.
This child node will return a Running state to the parent, wherever
the actions are being executed, a Success state once the goal is
achieved, or a Failure state otherwise. A single node or leaf node
is referred to as a primitive behavior. Composed behaviors utilize a
combination of primitive behaviors and other composed behaviors,
thereby defining a behavior hierarchy. Additionally, EDBT has a
blackboard. A blackboard is a data structure composed of a dictio-
nary, which is a collection of (key, value) pairs. Those blackboards
are private; no values or key information are shared between trees.
All nodes, excluding the root, can be categorized as:

o Action: These nodes execute commands to the agent when
receiving Ticks, such as grabbing an object. Once the ac-
tion is completed, it returns Success; otherwise, it returns



VRCAI ’25, December 13-14, 2025, Macau, China

QueryPartialPath

not
TaskCanBeContinue ()

® {
GetTaskPreconditon () HardRequestSender
request[“help-to-move”,

blackboard|[“requestTask”]]
receivers:
blackboard[“receivers”]
condition: true

timeout: 150

quorum: 1

Figure 3: Checking for a complete path when moving a box to
the next room. The agent will send HRS if it is not possible.

Failure. When the action is ongoing, it returns Running.

Shaded boxes represent actions (see Figure 2, DropTask node).

e Composite: These nodes propagate the Ticks directly to
their children in a specific order. The node decides which
child will be activated and the return state. These nodes can
have multiple child nodes. The composite is represented as a
square symbol or rectangle with text. For Composite nodes,
there are common types such as:

— Sequences: These nodes are used when actions need to be
executed in order, one after the other, and their execution
depends on the completion of the previous one. The node
routes the Ticks to the left child and returns Running or
Failure based on the node’s state. The node will return
to Success if and only if all children return Success. The
child nodes will be executed in order; once a node returns
Success, the subsequent node will receive the Ticks; oth-
erwise, in the Failure state, the subsequent nodes will
not be executed. The symbol of the Sequence node is a
box labeled with “— >” (see Figure 3).

— Fallback: These nodes are used when multiple actions
aim at the same goal, and their Success is independent
of each other. The node will route the Ticks to the left-
side child and return Success or Running based on the
current child. A Fallback node returns Failure if and only
if all children fail. Once a child node returns Running or
Success, the Ticks will not be routed to other children.
The symbol of the Fallback node is a box labeled with “?”
(see Figure 2).

— Parallel: These nodes are used when all children’s nodes
must be executed simultaneously. Considering M as nodes
and N as a children countand M < N, if M children return
Success, then the Parallel node will return Success too.
If more than N — M nodes return Failure, then this node
fails. Otherwise, the node will return a Running status.
The symbol of the Parallel node is a box labeled with “=>

Pedro Acevedo, Fengze Zhang, and Christos Mousas

e Decorator: These nodes have a single composite or action
node as a child. Some examples include conditional nodes,
which check whether specific constraints and situations
are met to propagate Ticks to their children. They return
Success and Failure when the conditions are true or false,
respectively. The conditions are represented by a diamond
shape (see Figure 2). The observer decorator is used to react
to events and abort nodes that are in the Running status. Ad-
ditionally, the blackboard observer decorator (BOD), which
checks a blackboard key and has an abortion rule, is set to
state Running based on whether the condition of the black-
board key is met. Still, if the abortion rule happens, the node
execution can be stopped.

o Service: These nodes change the behavior of their com-
posite node by adding a method and altering the activation
frequency. Whenever a service node receives a Tick, it sends
the Tick to its child and repeatedly calls the method at the
specified frequency as long as at least one of the composite’s
descendants returns a Running status. Then, once its child
returns a Success/Failure status, the service node returns
the result to its parent. Since the method called by a service
node is executed concurrently, nodes in the Running status
are not interrupted. Services have a single child and are rep-
resented graphically by the infinity (co) symbol (see Figure 2,
PickATask node).

(2) (b) (© (d

Figure 4: Agents in a scenario that demands coordination. (a)
An agent has an object in its hand but is waiting (represented
by a yellow sphere) for another agent to open the door. (b) A
second agent gets a request and presses a button to open the
door. (c) An agent needs to move an object that is too large for
a single agent to handle, and a second agent has dropped its
current task and is ready to assist the other agent in moving
the large object.

3.2 Coord-EBT

Coord-EBT is an EDBT extension incorporating a messaging pro-
tocol for multi-agent coordination. Agis et al. [Agis et al. 2020]
introduced the Coordination nodes, which manage message ex-
changes between agents. Within this protocol, a sender agent (s)
can send a message to another agent (r) to execute a task or a
specific sub-tree within its BT. The message is a 4-tuple:

msg = (s, req, c, t), (1)

where s is the sender of the message, req denotes the specific re-
quest, ¢ denotes a condition that needs to be met to be able to
execute req, and t denotes a time limit after which the message is



Event-driven Multi-Agent Concurrent and Collaborative Coordination

discarded if not acted upon. A request is a pair:
req = [type, parameters], (2)

where type specifies the branch that will be executed by r and
parameters as a tuple of inputs needed for the action (e.g., req =
[“open—door,”( button position)]). The messages are stored in the
receiver Mailbox, which is a priority queue for any message sent
between agents. Each agent has a service node (CheckMailbox)
that continuously checks for new messages in their Mailbox and
processes them upon arrival.

In response to requests, there is the Request Handler (RH), which
encapsulates request types or task branches that should be executed
when a message is accepted, as callbacks. RH nodes consist of:

e a blackboard key that tracks whether a request of a specific
type has been received;

e a condition defining when the request should be processed;
and

e an aborting rule that terminates the request if necessary.

There are two types of request nodes:

o Soft Request Sender (SRS): The sender continues execut-
ing its BT after sending a message; and

e Hard Request Sender (HRS): Executing both the sender’s
and receiver’s subtrees requires a quorum ¢ (a minimum
number of confirmed receivers) before proceeding.

Unlike traditional BT approaches that rely on a shared black-
board for coordination, Coord-EBT enables reactive, message-driven
coordination, ensuring dynamic agent interactions without persis-
tent shared memory dependencies.

3.3 Smart Object Paradigm

Smart objects are instances of objects in the environment that
store information, which can be shared with agents upon direct
interaction. This enables agents to dynamically adapt their actions
based on the object’s properties and constraints, effectively allow-
ing them to “learn” how to handle interactions with encountered
objects [Abaci et al. 2005]. Beyond their geometric attributes for
visualization, smart objects encapsulate semantic information that
aids animation and interaction. These objects store data as a set of
attributes, conveying details such as key interaction points (e.g.,
where and how a virtual character should position its hands to grasp
the object), predefined animation sequences (e.g., a door opening),
and non-geometric properties (e.g., weight or material type). This
semantic information enables virtual characters to perform context-
aware interactions, such as grasping, moving, or operating objects
(e.g., machines or elevators). Additionally, smart objects facilitate
action planning by incorporating preconditions—must be met before
an action can be executed—and effects, which define the changes to
the scene state after the action is performed.

4 Methodology

In this section, we present the methodology for integrating Coord-
EBT with smart objects to handle multi-agent scenarios that de-
mand collaboration and agent-object interactions. In this process,
we define the different subtree structures and object components
to create a simulation. For our implementation, we focused on a

VRCAI ’25, December 13-14, 2025, Macau, China

simulation in which agents must coordinate on a moving task, as il-
lustrated in Figure 4, involving the placement of smart objects from
one room to another, encompassing preconditions, concurrency,
and coordination.

4.1 Environment Specification

We simulated a moving task scenario involving n agents, each
with the same role and EDBT. The scene comprises two rooms
(i.e., A and B) and a door connecting them. In this environment,
the agents operate autonomously, aiming to complete all tasks in
the task pool (see Section 4.2). All agents share the same set of
capabilities, including grabbing objects, moving to a destination,
checking their Mailbox, sending requests, and pressing buttons.
Additionally, agents are aware of each other’s presence in the scene
for navigation purposes. They dynamically recalculate their paths
whenever they detect other agents or obstacles in their way. The
environment is simulated inside the physics simulator and NavMesh
components of the Unity game engine.

4.2 Task Pool

The task pool is a structure that compiles all task-related informa-
tion within the environment. A task is defined as an action that
agents must perform on a smart object, such as delivery or press-
ing a button. Each task can exist in one of three states: queue, in
progress, or done. A task can also be classified as non-interruptible,
meaning that the task cannot be dropped. The task pool is shared
among agents, as it represents the current state of the simulation.
Additionally, it establishes dependencies between tasks through pre-
conditions, where a specific task x can only begin (or is in progress)
once another task y has been completed (i.e., done). The pool filters
available tasks, ensuring that agents select only those still in the
queue state. The simulation concludes when all tasks have been
marked as done.

4.3 Smart Objects

These objects store semantic and animation-related information
that agents can access upon interaction. For example, they include
the object state, which can be initial, agent, referring to when an
agent is grabbing the object, goal, once the agent reaches the final
destination, and shared, which is when multiple agents hold the
object. They also store data such as the final destination, grabbing
points for animation, type, and objective.

In this scenario, we defined two main types of smart objects: box
and button. A button serves the primary function of activating a
sliding door, which opens after a specific delay. The button must
remain pressed until the door is fully open. Once opened, the door
remains open for the rest of the simulation.

Box is the central component of the simulation. Each box has a
designated destination in Room B and stores information about its
final position, animation control, and box type. There are three box
types: regular, concurrent, and large. Specifically:

e aregular box can be carried by a single agent and transported
to its final position;

o a concurrent box can be moved alongside other boxes, allow-
ing an agent to perform multiple tasks simultaneously when
handling concurrent or regular boxes. Additionally, these



VRCAI ’25, December 13-14, 2025, Macau, China

boxes have extra capacity, enabling another box to be placed
on top of them; and

e a large box requires coordination between two or more
agents to be transported to its destination.

This classification of different cases requires more agent-object
interactions, considering the object inherits actions to complete the
task.

4.4 Task Interaction

In our implementation, all agents perform the same EDBT (see
Figure 2). These entities are configured as 3D virtual characters that
follow commands based on the task pool. An agent operates in one
of four states: available, occupied, follow, or waiting. Specifically:

e an agent is available when it has no assigned task and it is
represented with green color;

e an agent becomes occupied once it starts a task that is still
in progress, and is represented with orange color;

e an agent enters a follow state once an interaction between
a large object happens, and two or more agents move the
object, which is represented in blue; and

e an agent enters a waiting state when its assigned task has a
precondition to be completed before it begins, and when an
agent is expecting to get a response to a sent request. This
state is represented by the yellow color.

Furthermore, an agent possesses a property called “power,” which
is related to the number of objects an agent can move. In the case
of a small object, a total power of one is required, but for large
boxes, which require a power of two or higher, a single agent
may not be sufficient. Agents, in an available state, repeatedly
check incoming messages through the service CheckMailbox and
continuously seek tasks using the PickATask service node, which
queries for tasks that are in the queue. In addition, agents have

the respective request handler for the coordination task “open-door”

and “help-to-move” (see Section 4.6). Once an agent selects a task, it
proceeds to complete it. The task’s status is then updated to progress
and reflected in the shared task pool, which all agents can access
as part of the environment. The agent then executes Behavior 1
related to the node MoveToTask.

Behavior 1 (Move to task)

(1) The agent selects a task x and sets it up as in progress.

(2) The agent retrieves the position of x, which corresponds
to a smart object obj.

(3) The agent determines an appropriate interaction point in
the environment. This point is provided by obj, which
maintains multiple interaction points and assigns one to
each requesting agent.

(4) Using a navigation mechanism and obstacle avoidance, the
agent moves to the assigned interaction point.

(5) Once the agent reaches the interaction point, it begins
executing the task x by interacting with obj.

ObjectInteraction and ButtonInteraction are other action
nodes describing specific behaviors related to smart object ma-
nipulation (see Sections 4.4 and 4.5, respectively). Among other
behaviors, an agent can drop a task. If it needs to respond to a

Pedro Acevedo, Fengze Zhang, and Christos Mousas

request or event, it must drop its current task (not between con-
current tasks) before performing another action. An agent follows
Behavior 2 related to the node DropTask.

Behavior 2 (Drop a task)

(1) The agent is executing the task x but must abandon it to
perform another task.

(2) The agent returns the task x to the queue state.

(3) The agent detaches or releases all associated smart objects
obj and pending objects.

(4) All smart objects obj, including the ones from the pending
list, remain in their current position.

(5) The agent changes its state to available.

(6) The agent resumes EDBT execution.

4.5 Object Interaction

The agent interacts with a smart object as part of a task. This
process begins once the agent reaches the designated interaction
point and initiates the task (see Behavior 3). A task will be set
up as in progress as soon as it is assigned and the agents start to
move to the interaction point. This behavior applies to all object
types, with specific interactions for boxes, including handling large
objects and concurrent tasks (see Figure 5).

Behavior 3 (Smart object interaction)

(1) The agent reaches a smart object obj.

(2) The agent queries obj for interaction details, including
contact points (e.g., where the agent should place its hands)
and object type.

(3) Based on obj’s type, the agent performs the corresponding
animation.

(4) The agent continues executing its EDBT, following the
task’s requirements.

When interacting with a box, the agent first validates whether
the box needs to be moved and whether it is available to do so.
The agent’s actions depend on the box type. For a regular box,
the agent performs a grab action, establishes the interaction, and
checks for a path to the next room. For a large box (see Figure 6),
the agent verifies whether it has sufficient power to move it. If not,
an HRS is triggered to request assistance. Furthermore, the agent
validates if the box can be moved by checking for a path to the next
room QueryPathPartial (see Figure 3). If the path is partial or not
complete, the agent will send a HRS for help.

For a concurrent box (see Figure 10), the agent checks whether
concurrent tasks are available in the task pool. These tasks involve
objects with the concurrent property enabled, allowing agents to
reactively grab multiple objects at once. For example, an agent
already holding a box and in waiting state, may pick up a second
one, enabling simultaneous task completion.

4.6 Button Interaction

The agent-button interaction is mapped on the ButtonInteraction
composite node (see Figure 8). The agent will query the current
distance between its position and the button position to perform



Event-driven Multi-Agent Concurrent and Collaborative Coordination VRCAI ’25, December 13-14, 2025, Macau, China

ObjectInteraction

IsCloseToObject ()

A AL A

NeedToBeMoved () ConcurrentTaskAvailable () IsWaiting() IsDelivered()

T

Figure 5: Box interaction hierarchy, considering scenarios such as NeedToBeMoved, which determines if a box is available for
interaction; ConcurrentTaskAvailable, which checks whether another task involves an object marked as concurrent; IsWaiting,
which validates whether the agent can proceed with the task while in a waiting state; and IsDelivered, which marks the task
as complete once the agent reaches the final position of the box.

._<
~

start to open, and the agent remains in place, holding the button
until the door is fully open. Once the door is open, the task is set to
done.

IsCurrentTaskLarge ()

N

IsPowerEnough ()

hd

HardRequestSender
request[“help ”

3 IsCloseToButton ()
blackboard[“requestTask”]]
receivers:
blackboard[“receivers”]
condition: true
timeout: 150 2

quorum: 1 =

Figure 6: The task is with a large object. The agent will send
an HRS.

®

ButtonInteraction

IsDoorClosed () IsDoorFullyOpen ()

X ®
PressButton () EndTask ()

Figure 8: Button interaction behavior hierarchy.

ConcurrentTaskAvailable ()

4.7 Coordination

In the defined MAS, there are opportunities for agents to coordinate
| . ? to complete a task. In this case, agents will use the HRS mechanism

Blackboard [currentTask] = -1
because it forces agents to wait for prerequisites. For this mecha-

nism, as described by Agis et al. [Agis et al. 2020], agents should

w w perform specific behaviors that leverage this communication in-
teraction (see Appendix ??). Initially, agents can get requests and

Figure 7: The concurrency behavior. execute the behavior associated with the type. Then, an HRS is exe-
cuted after both parties (according to the defined quorum) confirm

their agreement (see Figure 9). In this implementation, an agent
Behavior 2. Once the agent presses the button, the sliding door will can send a request r of two types: “open-door” and “help-to-move.”




VRCAI ’25, December 13-14, 2025, Macau, China

>

IsWaiting()

<

TaskCanBeContinue ()

AN

Pedro Acevedo, Fengze Zhang, and Christos Mousas

>

IsCurrentTaskLarge ()

P

IsPowerEnough ()

<

-

Iscurrel’ltl‘vkhkge (¢}

R ® R
|setAgentDestination()T|AttachLargeObject()\T |SetAgentDestination() I Pushobject () ‘T’

(@)

(b)

Figure 9: Agents’ reactive actions: (a) once an agent is in a waiting state and it is checking for the precondition of the current
task to be completed before proceeding, and (b) checking whether the task with a large box can be completed.

4.7.1  Opening Door. In this coordination scenario, the agent s
picked a task that required moving a box to the next room. This
task has an assigned precondition stating that the task of opening
the door should be done first before this task can be completed (see
Figure 9a). Then, Behavior 4 is executed.

Behavior 4 (Open door coordination)

(1) Agent s executes Behavior Handling Hard Request with
a req of type “open-door,” ¢ = 1, and the precondition of
not being at the door already.

(2) Agent r, who is focusing on another task and meeting the
criteria, sends the confirmation to s:

(a) The agent r executes Behavior 2 and will perform the
behavior associated with the request type “open-door”
request.

(b) The agent r proceeds to execute Behavior 3 with the
button smart object (see Section 4.5).

(c) Meanwhile, since the agent r is taking the message from
s, s enters a waiting state and holds the box.

(d) During each simulation tick, the agent s continuously
checks for an available path to the box’s final destination.

(e) Once a valid path is detected, the Agent s transitions
from a waiting state to an occupied state and begins
moving toward the destination.

(f) Agent s reaches the final destination, and the task is set
up as done.

(g) Agent s change its state to available.

(3) None of the agents met the criteria, or the quorum is never
met before t elapses:

(a) Agent s performs Behavior 4 after a timeout to resend
the request.

4.7.2  Large Object. In this coordination scenario, the agent s picked
a task that required moving a large box to the next room. Since the
box is too large for a single agent to carry (due to insufficient power),
the task requires coordination between two or more agents (see

Figure 9b). The sequence of events for completing this coordination
process is shown on Behavior 5.

Behavior 5 (Large object coordination)

(1) Agent s executes Behavior Handling Hard Request with
areq of type “help-to-move,” ¢ = 1, and the precondition
of not being at the door already.

(2) Agent r, who is focusing on another task and meeting the
criteria, sends the confirmation to s:

(a) Agent r executes Behavior 2 and will perform the RH
associated with the request type “help-to-move.”

(b) Agent r executes Behavior 3 with the large box smart
object (see Section 4.4).

(c) Meanwhile, since Agent r has accepted the request,
Agent s put itself in a waiting state.

(d) At the large object, Agents s and r position themselves
on the respective interaction points, adjusting their ani-
mations to grasp the object correctly.

(e) Agent r and s start pushing the large object to the final
destination, following a similar path.

(f) Agents s and r reach the final destination, and the task
is set up as done.

(3) None of the agents met the criteria, or the quorum is never
met before ¢ elapses:

(a) Agent s performs Behavior 5 after a timeout to send
out back the request.

5 Application Example

In this section, we present various simulated moving task scenarios
to empirically validate the proposed MAS.

5.1 Example 1: Open the Door

In this scenario, there are two agents, A1 and A2, and three tasks:
moving two regular boxes (T1 and T2) and pressing a button to
open a door between rooms (T3). Agents Al and A2 each pick a
task related to boxes T'1 and T2, respectively. Once the simulation



Event-driven Multi-Agent Concurrent and Collaborative Coordination

begins, agents are activated one after another, with the first agent
reaching its assigned box first. Upon interacting with T1, the agent
A1 checks for any preconditions and determines that the door must
be open before completing the task. Since T3 must be completed
first, agent A1 activates Behavior 4 to request assistance moving
the box. Meanwhile, agent A2 reaches its assigned box, but before
it can send a request, its Mailbox receives a request from agent
Al. Since agent A2 meets the criteria to perform T3, drops T2, and
proceeds to complete the task by pressing the button to open the
door. At this stage, the agent A1 waits with the box in hand while
agent A2 stands next to the door, pressing the button as the sliding
door opens. Once the door is open enough for the agent Al to
proceed, it moves to the final destination to complete the T1 task.
Once the door is fully open, agent A2 becomes available and picks
up task T2, which is the only remaining task in the queue. Agent A2
then executes the ObjectInteraction node to complete T2, and
the simulation concludes.

5.2 Example 2: Large Object Interaction

In this scenario, there are two agents, A1 and A2, and two tasks:
pressing a button to open a door (T'1) and moving a large box (T2).
Each agent selects a task from the task pool. Agent A2 is assigned
T1 and moves to the button to open the door, while agent A1,
assigned T2, heads toward the large box. Upon reaching the box,
agent Al evaluates whether it has sufficient strength to move it.
Since agent A1 has a power of one, but the box requires a total of
two, it determines that assistance is needed and initiates Behavior
5 to request help. Meanwhile, the agent A2, positioned at the button,
begins pressing it to open the sliding door. Because the door requires
the agent to remain in place while it opens, A2 cannot move.

At this moment, agent A2 receives a “help-to-move” request in
its Mailbox. However, since T1 is classified as a non-interruptible
task, agent A2 continues performing its assigned action without
responding to the request. To ensure the request is received, agent
A1 will resend the request until a response is successful. Once A2
completes T1, it processes the pending request and moves to assist
A1, enabling the completion of T2.

5.3 Example 3: Coordination Scenario

In this scenario (see Figure 1), there are four agents (i.e., A1, A2,
A3, and A4) and seven tasks: pressing a button to open a door
(T1), moving a regular box (T2), moving concurrent boxes (T3,
T4, and T5), and moving large boxes (T6 and T7). As tasks are
assigned randomly, multiple outcomes are possible. In the following
paragraphs, we describe a scenario that illustrates how the EDBT
framework operates.

In this scenario, the initial task distribution is as follows: Al
is assigned T1 (opening the door), A2 is assigned T2 (moving a
regular box), A3 takes T3 (a concurrent box), and A4 handles T5
(another concurrent box). While A1 is occupied with opening the
door, the other agents proceed to interact with their respective ob-
jects. Since T3 and T5 are concurrent tasks, A3 has the opportunity
to pick up a second concurrent box, allowing it to carry two boxes
simultaneously.

Once the door fully opens, Al is free to select a new task and
picks T6, a large object. Meanwhile, the other agents proceed to the

VRCAI ’25, December 13-14, 2025, Macau, China

next room to place their boxes. When A1 reaches the large object,
it executes Behavior 5 and sends a help request. This request is
accepted by A3, which is still holding two concurrent boxes. In
response, A3 executes Behavior 2, dropping both boxes on the
floor before assisting with T6. At this point, A4, originally assigned
T5, returns to the room to pick another available concurrent task
(T3) since A3 just dropped two boxes. As a result, A4 now carries
two boxes. Meanwhile, A2, having completed T2, selects a new task,
T4, and picks up one of the boxes left by A3.

With A1 and A3 now collaborating to push the large object to
its destination, A2 and A4 complete their respective tasks. Once
finished, the final task, T7, is assigned to a single available agent,
who moves toward the smart object in the other room. Since no
other tasks remain, the rest of the agents remain idle at their final
destinations, waiting for further assignments. At this moment, a
“help-to-move” request is received by A1, which moves into posi-
tion to execute Behavior 5 once again. With A1 and A2 working
together, the large object is moved, marking T7 as completed. This
concludes the simulation.

6 Evaluation

We evaluated the effectiveness of the proposed approach by com-
paring two methods: (1) a baseline method without Coord-EBT
capabilities and (2) the current method incorporating the messag-
ing mechanism. It is important to note that the baseline still in-
cluded the tasks poll and the same smart objects; however, in this
version, agents would wait for a fixed timeout for the task’s pre-
condition to be met. We set a 10-second timeout for the waiting
state to allow enough time for another agent to select and complete
the prerequisite task, as we noticed during our development and
testing process that less than 10 seconds would result in frequent
premature timeouts, causing agents to abandon their current tasks
unnecessarily and degrading overall coordination efficiency. If not
satisfied within that time, the agent would drop the task and select
a new one. We defined a scenario consisting of 11 tasks, including
door opening, two large objects, four concurrent boxes, and four
regular boxes, and varied the number of agents (i.e., 2, 4, 6, 8, and
10). Each configuration was run 10 times. We used the average task
completion time as the evaluation metric. A simulation run was
considered complete once all tasks were marked as done.

As shown in Figure 10, results indicate a consistent decrease
in completion time as the number of agents increased, which was
expected due to the broader task coverage. Quantitatively, the base-
line method showed higher means and larger variability across all
agent counts (e.g., 184.14 + 58.91 s with 2 agents, decreasing to
53.52 + 16.38 s with 10 agents), whereas the messaging-based ap-
proach achieved substantially faster and more stable performance
(e.g., 108.95+10.22 s with 2 agents and 34.58 +£4.10 s with 10 agents).

Across all conditions, our framework outperformed the baseline
and exhibited markedly lower standard deviations, demonstrat-
ing more consistent and reliable coordination. These results show
that integrating Coord-EDBT significantly enhances multi-agent
collaboration and overall task completion efficiency.



VRCAI ’25, December 13-14, 2025, Macau, China

250 condition
 baseline
@ o messaging
mZOO
£
=
wlSD
o
5 =
glOO -
< \
50 e Q = ;‘ -
=
2 4 6 8 10

Number of Agents

Figure 10: The evaluation results, showing the completion
time between the baseline and the messaging conditions.

7 Conclusion and Future Work

In this paper, we describe the implementation of autonomous agent
behavior using Coord-EDBT and smart objects in a MAS simu-
lation scenario. We presented our system by detailing different
EDBT instances and illustrating how simulation elements interact.
To validate our approach, we implemented a collaborative mov-
ing task where multiple agents transport objects from Room A to
Room B. Various examples demonstrated how collaboration is fa-
cilitated through the message/request mechanism, including tasks
such as opening doors and moving large objects. Additional scenar-
ios explored concurrency in box handling, varying agent numbers,
and multi-interface interactions, highlighting how agents rely on
each other to complete tasks. An evaluation showed that our ap-
proach outperformed a baseline MAS in most cases, demonstrating
the effectiveness of the communication mechanism. While BTs
provide structured agent coordination, they also have limitations,
particularly in their reliance on expert design and the inherent
predictability of agent behavior. However, in this context, we found
them suitable as they allow controlled agent collaboration through
predefined coordination mechanisms.

For future work, we plan to extend our system by incorporating
a failure callback mechanism for handling unsuccessful requests. In
the current implementation, when a request fails, the agent attempts
to resend it after the message timeout has elapsed. However, instead
of continuously retrying, an agent should be able to recognize the
failure and select an alternative task that can be completed within
the scenario, preventing it from getting stuck. Additionally, we aim
to compare our framework with other collaboration mechanisms,
such as planners for scene synthesis, and to enhance the simulation
environment by incorporating more dynamic elements, including
utility-based decision-making, for optimizing agent actions. Finally,
enabling user input for direct agent control and conducting user
studies on perceived agent collaboration would provide valuable
insights into human-agent interaction.

References

Tolga Abaci, Jan Ciger, and Daniel Thalmann. 2005. Planning with smart objects. In
International Conferences in Central Europe on Computer Graphics, Visualization
and Computer Vision.

Ramiro A Agis, Sebastian Gottifredi, and Alejandro J Garcia. 2020. An event-driven
behavior trees extension to facilitate non-player multi-agent coordination in video
games. Expert Systems with Applications 155 (oct 2020), 113457. do0i:10.1016/j.eswa.
2020.113457

Stefano V Albrecht, Filippos Christianos, and Lukas Schéfer. 2024. Multi-Agent Re-
inforcement Learning: Foundations and Modern Approaches. MIT Press. https:
//www.marl-book.com

Pedro Acevedo, Fengze Zhang, and Christos Mousas

Jasmine Jerry Aloor, Siddharth Nagar Nayak, Sydney Dolan, and Hamsa Balakrishnan.
2024. Cooperation and Fairness in Multi-Agent Reinforcement Learning. ACM
Journal on Autonomous Transportation Systems 2, 2 (dec 2024), 1-25. doi:10.1145/
3702012

Abdollah Amirkhani and Amir Hossein Barshooi. 2022. Consensus in multi-agent
systems: a review. Artificial Intelligence Review 55, 5 (2022), 3897-3935. doi:10.
1007/s10462-021-10097-x

Alex ] Champandard and Philip Dunstan. 2019. The behavior tree starter kit. In Game
Al Pro 360: Guide to Architecture. CRC Press, 27-46.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min
Chan, Yujia Qin, Yaxi Lu, Ruobing Xie, and Others. 2023. Agentverse: Facilitating
multi-agent collaboration and exploring emergent behaviors in agents. arXiv
preprint arXiv:2308.10848 2, 4 (2023), 6.

Michele Colledanchise, Diogo Almeida, and Petter Ogren. 2019. Towards Blended
Reactive Planning and Acting using Behavior Trees. In 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 8839-8845. d0i:10.1109/icra.2019.8794128

Michele Colledanchise, Alejandro Marzinotto, and Petter Ogren. 2014. Performance
analysis of stochastic behavior trees. In 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 3265-3272. doi:10.1109/icra.2014.6907328

Michele Colledanchise and Lorenzo Natale. 2018. Improving the Parallel Execution of
Behavior Trees. In 2018 IEEE/RST International Conference on Intelligent Robots and
Systems (IROS). IEEE, 7103-7110. doi:10.1109/ir0s.2018.8593504

Ali Dorri, Salil S Kanhere, and Raja Jurdak. 2018. Multi-Agent Systems: A Survey. IEEE
Access 6 (2018), 28573-28593. doi:10.1109/access.2018.2831228

Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning: a
survey. Artificial Intelligence Review 55, 2 (2022), 895-943. doi:10.1007/s10462-021-
09996-w

Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ogren, and Christian Smith.
2022. A survey of Behavior Trees in robotics and Al Robotics and Autonomous
Systems 154 (aug 2022), 104096. doi:10.1016/j.robot.2022.104096

Anja Johansson and Pierangelo Dell’Acqua. 2012. Emotional behavior trees. In 2012
IEEE Conference on Computational Intelligence and Games (CIG). IEEE, 355-362.
doi:10.1109/cig.2012.6374177

Huimin Liu, Minsoo Choi, Dominic Kao, and Christos Mousas. 2023. Synthesizing
Game Levels for Collaborative Gameplay in a Shared Virtual Environment. ACM
Trans. Interact. Intell. Syst. 13, 1 (mar 2023). doi:10.1145/3558773

Siqi Liu, Guy Lever, Nicholas Heess, Josh Merel, Saran Tunyasuvunakool, and Thore
Graepel. 2019. Emergent Coordination Through Competition. In International Con-
ference on Learning Representations. https://openreview.net/forum?id=BkG8sjR5Km

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAlI Pieter Abbeel, and Igor Mordatch.
2017. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
68a9750337a418a86fe06c1991ald64c-Paper.pdf

Aadesh Neupane and Michael Goodrich. 2019. Learning Swarm Behaviors using
Grammatical Evolution and Behavior Trees. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (IJCAI-2019). International
Joint Conferences on Artificial Intelligence Organization, 513-520. doi:10.24963/
ijcai.2019/73

Renato de Pontes Pereira and Paulo Martins Engel. 2015. A Framework for Constrained
and Adaptive Behavior-Based Agents. doi:10.48550/ARXIV.1506.02312

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe, Multi-Agent,
Reinforcement Learning for Autonomous Driving. doi:10.48550/ARXIV.1610.03295

Xiumin Shang, Tengyu Xu, Ioannis Karamouzas, and Marcelo Kallmann. 2023.
Constraint-based multi-agent reinforcement learning for collaborative tasks. Com-
puter Animation and Virtual Worlds 34, 3—4 (may 2023). doi:10.1002/cav.2182

Alexander Shoulson, Max L Gilbert, Mubbasir Kapadia, and Norman I Badler. 2013. An
Event-Centric Planning Approach for Dynamic Real-Time Narrative. In Proceedings
of Motion on Games (MIG ’13). ACM, 121-130. doi:10.1145/2522628.2522629

Christopher Iliffe Sprague and Petter Ogren. 2022. Adding Neural Network Controllers
to Behavior Trees without Destroying Performance Guarantees. In 2022 IEEE 61st
Conference on Decision and Control (CDC). IEEE, 3989-3996. do0i:10.1109/cdc51059.
2022.9992501

Enrique Areyan Viqueira and Cyrus Cousins. 2019. Learning simulation-based games
from data. In Proceeding AAMAS’19 Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, Vol. 2019.

Xiangke Wang, Zhiwen Zeng, and Yirui Cong. 2016. Multi-agent distributed coordina-
tion control: Developments and directions via graph viewpoint. Neurocomputing
199 (2016), 204-218. doi:10.1016/j.neucom.2016.03.021

G Weiss. 1999. Multiagent systems: a modern approach to distributed artificial intelligence.
MIT press.

Xun Zhang, Davide Schaumann, Brandon Haworth, Petros Faloutsos, and Mubbasir
Kapadia. 2019. Coupling agent motivations and spatial behaviors for authoring
multiagent narratives. Computer Animation and Virtual Worlds 30, 34 (may 2019).
doi:10.1002/cav.1898

Yongqi Zhang, Haikun Huang, Erion Plaku, and Lap-Fai Yu. 2021. Joint Computational
Design of Workspaces and Workplans. ACM Transactions on Graphics 40, 6 (2021).


https://doi.org/10.1016/j.eswa.2020.113457
https://doi.org/10.1016/j.eswa.2020.113457
https://www.marl-book.com
https://www.marl-book.com
https://doi.org/10.1145/3702012
https://doi.org/10.1145/3702012
https://doi.org/10.1007/s10462-021-10097-x
https://doi.org/10.1007/s10462-021-10097-x
https://doi.org/10.1109/icra.2019.8794128
https://doi.org/10.1109/icra.2014.6907328
https://doi.org/10.1109/iros.2018.8593504
https://doi.org/10.1109/access.2018.2831228
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1109/cig.2012.6374177
https://doi.org/10.1145/3558773
https://openreview.net/forum?id=BkG8sjR5Km
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://doi.org/10.24963/ijcai.2019/73
https://doi.org/10.24963/ijcai.2019/73
https://doi.org/10.48550/ARXIV.1506.02312
https://doi.org/10.48550/ARXIV.1610.03295
https://doi.org/10.1002/cav.2182
https://doi.org/10.1145/2522628.2522629
https://doi.org/10.1109/cdc51059.2022.9992501
https://doi.org/10.1109/cdc51059.2022.9992501
https://doi.org/10.1016/j.neucom.2016.03.021
https://doi.org/10.1002/cav.1898

	Abstract
	1 Introduction
	2 Related Works
	2.1 BT-driven Agents
	2.2 Multi-Agent Systems

	3 Background
	3.1 Event-driven Behavior Tree
	3.2 Coord-EBT
	3.3 Smart Object Paradigm

	4 Methodology
	4.1 Environment Specification
	4.2 Task Pool
	4.3 Smart Objects
	4.4 Task Interaction
	4.5 Object Interaction
	4.6 Button Interaction
	4.7 Coordination

	5 Application Example
	5.1 Example 1: Open the Door
	5.2 Example 2: Large Object Interaction
	5.3 Example 3: Coordination Scenario

	6 Evaluation
	7 Conclusion and Future Work
	References

