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Virtual Roomie: Immersive Layout Co-design with a Virtual Agent
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Figure 1: The co-design system pipeline details the interaction mechanism between a virtual agent and a user, as well as the
agent’s decision-making process. The interaction mechanism utilizes a turn-taking approach for the co-design task, in which
both the user and the agent wait for the other to complete actions before editing the environment. The agent’s decision-making
involves two key actions: (1) selecting objects from a furniture dataset and (2) applying an optimization-based design strategy.
This strategy employs a greedy algorithm to update the current layout by minimizing the total cost function (Cry,7), Which
evaluates potential furniture placements based on proximity to boundaries, collision costs, and spatial relationships within the
living room environment. The optimized placements suggested by the agent, integrated with user input, ultimately yield an

updated layout design.

ABSTRACT

We explored human-virtual agent collaboration during a layout de-
sign task in a virtual reality environment. Specifically, we devel-
oped a human-in-the-loop optimization-based method that drives
the decision-making of the virtual agent. Our algorithm accounts
for spatial constraints in furniture placement by evaluating bound-
ary proximity, collision costs, and relationships between furniture
items in real-time. It also considers the current configuration of the
living room, as modified by the user during the co-design process,
to guide the virtual agent’s furniture placement decisions in the vir-
tual living room. We compared our method (i.e., optimization)
against two other co-design strategies (i.e., template and random)
following a within-group (N = 24) study design. We found the pro-
posed optimization co-design strategy significantly enhanced per-
ceived collaboration compared to the other two co-design strate-
gies. Moreover, our participants attributed higher private and pub-
lic awareness to the virtual agent in the optimization condition. In
addition, the analysis of the logged data showed that participants
placed more furniture items and made fewer corrections when co-
designing the living room with a virtual agent whose decisions were
based on the optimization method. Our results demonstrate that a
virtual agent’s behavior, which dynamically responds to user ac-
tions while maintaining spatial coherence, creates more effective
collaborative experiences in an immersive co-design task.

Index Terms: Virtual agent, co-design, layout design, virtual re-
ality, immersive interaction.
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1 INTRODUCTION

As virtual reality (VR) continues to evolve as an immersive
medium, integrating artificial intelligence (AI) and virtual agents
into these environments presents promising opportunities for var-
ious tasks. These evolving human and virtual agent interactions,
such as collaborative design, virtual assistance, personalized train-
ing, and interactive storytelling, are transforming how users engage
with immersive environments [2, 18, 48]. Motivated by this poten-
tial, recent research by Rasch et al. [34] explored how Al repre-
sentation modes impact 3D object co-creation in VR. They identi-
fied that highlighting changes, incremental visualization, and em-
bodiment significantly influence user perception and engagement.
Notably, their findings revealed that embodied Al virtual agents
affect users’ perceived contribution to created models, with users
attributing greater creative input to the Al when it was visually rep-
resented. The combination of Al interaction and VR spatial capa-
bilities creates an ideal context for exploring effective collaboration
between virtual agents and humans [29, 33]. Previous studies have
deployed virtual agents in various VR scenarios, including guiding
users through environments [48], dynamically sensing and respond-
ing to their surroundings [17, 36], engaging in conversations [47],
collaborating on task-solving [8], and supporting the development
of soft skills [54], showcasing the versatility and utility of virtual
agents as valuable tools in VR.

Among the tasks well-suited to human-Al collaboration, lay-
out design stands out as particularly relevant. It involves arrang-
ing items or creating virtual environments in a way that reflects
users’ design goals [41, 49]. Yu et al. [50] and Zhang et al. [52]
showed that furniture layouts can accommodate aesthetic, func-
tional, and personal preferences through diverse configurations,
all while adhering to spatial constraints. This inherently open-
ended problem space offers an ideal setting to explore how humans
and Al agents make creative decisions in immersive environments
[34, 38]. To support such collaboration, we developed a human-in-

131



the-loop optimization-based method that guides the virtual agent’s
decision-making. Our algorithm (see Figure 1) evaluates spatial
constraints, including boundary proximity, collision between furni-
ture items, and relationships between furniture items. To showcase
our method, we designed a VR co-design layout (i.e., a living room)
experience in which users and the agent alternately place furniture,
enabling free navigation and direct contribution from both collabo-
rators.

To evaluate the proposed optimization decision-making of the
virtual agents, we conducted a user study to examine the effects of
co-design on several variables concerning interaction and percep-
tion of the virtual agent, virtual agent awareness, user experience,
design satisfaction, and user activity. Our findings offer valuable
insights into human-AlI co-design, especially in immersive VR en-
vironments where Al assists in creative tasks such as layout design.

2 RELATED WORKS
2.1

Layout design is a well-established problem in computer graph-
ics [25, 30]. In recent years, automation has become increasingly
integrated into design tools through Al, parametric modeling, and
optimization techniques [16, 37, 42, 50]. Researchers have devel-
oped methods to support more effective scene composition, reduc-
ing manual effort while improving spatial quality. For instance, Yu
et al. [50] developed an automated furniture layout tool that con-
siders accessibility, visibility, and spatial relationships to support
layout decisions beyond manual placement. Similarly, Yu et al.
[51] proposed an interactive tool for recommending clutter items
in indoor scenes, enhancing realism and reducing manual effort. In
VR contexts, Wang et al. [41] investigated layout editing through
object manipulation techniques that leverage spatial context to en-
able efficient arrangement in immersive environments. These meth-
ods highlight the complexity and creative potential of layout design
tasks, which are inherently open-ended and allow for multiple valid
solutions. In this study, we adopted the layout design problem as a
means to investigate and compare different co-design strategies in a
virtual environment, focusing on how human and agent interactions
influence the design process.

Al for Layout Design

2.2 Human-Virtual Agent Interaction

Human-virtual agent interactions span diverse contexts, supporting
decision making, task execution, and adaptability in collaborative
settings [9, 55]. Their effectiveness depends on several factors, in-
cluding realism, user representation, intelligence, and trust. For in-
stance, agents with realistic facial expressions and movements are
often viewed as more credible and engaging [20], while nonverbal
cues such as gestures, vocal qualities, and personality traits enhance
the quality of interaction [6].

Regarding perceived intelligence, Choi et al. [8] found that users
engaged more and performed better when interacting with intelli-
gent agents. Yang et al. [47] showed that deeper agent knowledge
enriched conversations, highlighting the value of adaptive and in-
formed agent behavior. Virtual agents can help users learn tasks
and pursue shared goals [32], adapting to individual needs, and pro-
vide feedback for smooth interaction [10]. However, users tend to
cooperate more and risk more with human teammates than with Al
ones, which can affect group dynamics and enjoyment [31].

Trust plays a crucial role in shaping human-agent interaction.
Daronnat et al. [11] demonstrated that trust can be inferred from
user behaviors such as reliance on the agent and perceived task dif-
ficulty. Moreover, the type of agent error affects user perception:
omission errors tend to be more acceptable than incorrect actions,
and users generally prefer moments of silence over inaccurate re-
sponses [10]. These findings highlight how various dimensions of
agent behavior influence user experience and collaboration quality.
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Thus, we focus on human-virtual agent collaboration in an immer-
sive design environment, aiming to explore how co-designing in
VR with a virtual agent affects users’ experiences.

2.3 Designing in VR

Researchers have demonstrated how VR transforms design pro-
cesses by enhancing spatial understanding and creative exploration
[3, 15, 38, 43]. Arora et al. [3] examined factors affecting VR
sketching, identifying physical surface absence as a key challenge
while establishing principles for improving accuracy through visual
guidance. Drey et al. [13] explored pen and tablet interaction for
3D sketching with their VRSketchln system, demonstrating how
combining mid-air drawing with surface-based sketching gives de-
signers greater control in immersive environments.

Freeman et al. [15] found significant advantages of VR-based
modeling over traditional desktop CAD interfaces, showing that
VR enables users to create more geometric features in the same
timeframe and produce designs rated as more creative. In interior
design, You et al. [49] developed RedesignUS, a VR system for
rebuilding and customizing homes through synthesized layouts and
decoration options. Their research demonstrated VR’s effective-
ness in supporting spatial visualization and furniture arrangement
by allowing users to experiment with design alternatives before im-
plementing physical changes. These advances in VR design ca-
pabilities form the foundation for our research into human-virtual
agent collaboration in immersive environments, focusing on how
Al can enhance creative design processes in spatial layout tasks.

2.4 Co-design and Interaction with Virtual Agents

Co-design approaches incorporating Al aim to enhance creativity
and improve the efficiency of the design process. Walsh and Wron-
sky [40] demonstrated how Al integration can create more inclu-
sive design experiences that benefit diverse populations. Vartiainen
et al. [39] demonstrated a co-design process using a text-to-image
generative Al system, enabling users to produce visual content col-
laboratively. Zhang et al. [52] introduced a co-design system in
which the Al agent offers scene layout suggestions based on the
user’s mouse position, functioning as an opinionated collabora-
tor. Building on this, Zhang et al. [53] developed a framework
using transformable modules to support the synthesis of multipur-
pose room layouts. Furthermore, Shaoi [28] used Large Language
Model (LLM)-driven agents to allow users to design a landscape
based on their text input. While these studies have advanced co-
design in desktop-based environments, the role of Al in immersive
VR settings, particularly when embodied through virtual agents, re-
mains underexplored [34]. Defining the role of Al as a co-designer
in VR is critical for understanding human-agent interactions in spa-
tial and embodied contexts. Addressing this gap, our study investi-
gates the dynamics of collaboration with an embodied virtual agent
during an open-ended co-design task in VR.

2.5 Research Questions

We identified the following research questions to help us evaluate
the proposed method and understand how users interact with a vir-
tual agent during a co-design task in an immersive VR experience:

* RQ1: How does the virtual agent’s co-design strategy impact
participants’ interaction and perception of the virtual agent
(i.e., co-presence, attentional allocation, perceived collabora-
tion, trust, performance)?

* RQ2: How does the virtual agent’s co-design strategy impact
participants’ perceptions of the agent’s awareness (i.e., pri-
vate, public, surrounding)?

* RQ3: How does the virtual agent’s co-design strategy impact
participants’ user experience (i.e., enjoyment, task load, sys-
tem usability, frustration, desire for future interaction)?



* RQ4: How does the virtual agent’s co-design strategy impact
participants’ final design satisfaction?

¢ RQS5: How does the virtual agent’s co-design strategy impact
the users’ activity (i.e., time, items placed, items edited)?

2.6 Contributions

Al has demonstrated potential in predicting user intentions and fa-
cilitating collaboration, including in VR design contexts [8, 34].
However, existing studies often focus on narrowly defined tasks.
Thus, there is a need to explore human-virtual agent interactions
in more creative and open-ended scenarios. Our research focused
on investigating layout design tasks involving virtual agents, ad-
vancing beyond constrained collaborative activities such as puzzle-
solving [8, 9], which typically involve single-solution problems
(e.g., the correct arrangement of puzzle pieces). Also, prior re-
search highlights the effectiveness of VR for spatial and interior
design tasks [3, 13, 15, 34, 44, 49, 53]. Building on these insights,
we introduce a human-in-the-loop optimization approach for vir-
tual agent decision-making during interior layout co-design in VR.
The agent interacts with the environment by navigating and ma-
nipulating objects, adapting its behavior based on user input. This
approach integrates real-time layout optimization in an immersive
setting, enabling interactive and adaptive co-design experiences.
Through a user study, we aim to contribute to the understanding
of human-virtual agent collaboration in immersive environments by
exploring an open-ended co-design task. We evaluate our method
against alternative strategies to assess its impact on user engage-
ment, collaboration quality, and design outcomes. We expect our
results to support more natural and effective collaboration between
humans and virtual agents in design.

3 VIRTUAL ROOMIE FRAMEWORK

We implemented a human-in-the-loop optimization-based method
that enables the virtual agent to determine the placement of a ran-
domly selected furniture item based on the current layout of the
virtual living room environment. The agent evaluates spatial con-
straints and the user’s previously placed items using a cost function
to identify the selected object’s most suitable position and rotation.
During optimization, the algorithm considers multiple placement
options and applies a greedy-based method to find an optimal so-
lution. This optimization approach minimizes computational costs
while maintaining coherence with user decisions. Thus, this ap-
proach ensures that furniture items are arranged to optimize spa-
tial relationships, supporting a more structured and intelligent co-
design process in real-time, as demonstrated in Figure 2.
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Figure 2: An example of an evolving layout design.

3.1

Preliminaries: Creating Example Layout Designs

We created a desktop-based application in Unity game engine that
allows users to create layout configurations of a living room. We
asked participants experienced in design to create example config-
urations of living room furniture to use later as targets in our op-
timization process (see Section 3.2). Specifically, we invited eight
students (five male and three female; age: M = 25.9, SD = 2.53)
from our department, all with backgrounds related to design (e.g.,
game design, level design). Before starting the task, participants
answered questions about their design experience and preferences
on a 7-point scale. On average, they reported high experience with
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design in their daily lives (M = 5.88, SD = 1.73), moderate profes-
sional design experience (M =4.75, SD = 1.49), and considered de-
sign personally or professionally important (M = 5.75, SD = 1.04).
Based on previously published work [1, 46], and given the variabil-
ity among participants, we had considered eight participants suffi-
cient to provide reliable data to inform our method.

Figure 3: (a) The furniture items we used in our application. (b)
The initial environment configuration with the furniture items in
the outer area.

We instructed our participants to design a living room with 19
furniture items we later used in our user study (see Figure 3a). Once
they finished, we saved the designed layouts and extracted informa-
tion that characterizes their configuration, such as the position p,-T
and rotation rl-T of each furniture item 7 in the living room environ-
ment, and the position BNear(piT) and rotation BNear(rl-T) of each
furniture item relative to the nearest boundary. We also defined
pairwise relationships between furniture items based on Zhang et
al.’s [52] categorization of dominant/subordinate objects, where the
dominant object serves as a “parent” and the subordinate is posi-
tioned and oriented relative to it. Based on this representation, we
also extracted the relative position and rotation between paired fur-
niture items, using the dominant furniture item as a reference point.
In our framework, this data served as input to inform the cost terms
in our total cost function (see Section 3.2).

3.2 Virtual Agent’s Decision Making
3.2.1

Let F = {f1, f2,..., fa} denote a set of n furniture items. Each fur-
niture item is represented as f; = {pi,ri,f)iT,i‘iT}, where p; denotes
the position and r; denotes the rotation of a furniture item #, and f)iT
denotes the target median position and f'iT denotes the target me-
dian rotation of a furniture item i. Note that the target values for
the median position and median rotations were computed from the
configurations resulting from our preliminary data collection (see
Section 3.1). For the decision-making process of our virtual agent,
we considered three costs in the total cost function (C7,,4;) to eval-
uate a particular design:

Problem Formulation

Crotal = WBoundaryCBaundary +weotisionCcottision +WPairCpair, (1)

where Cpoungary denotes the boundary cost and wgyundary 18 its as-
sociated weight. Ceyyjision Tefers the collisions cost and weypyision 18
its associated weight. Finally, Cp,; denotes the pairwise cost be-
tween furniture items, with wp,;, indicating its weight. The Cryyy;
is defined for a selected furniture item f; being tested in a particular
position p; and rotation r; in the living room environment by fol-
lowing an exhaustive search (brute-force search) through a greedy
algorithm; once it tests all the positions and rotations, it will select
the minimum cost for the furniture item to be placed (see Section
3.2.5). The Wgoundarys Wcollision» and wpgiy weights € [0, 1] control
the contribution of each cost term in the total cost function. We
graphically illustrate the cost terms in Figure 4.
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Figure 4: The (a) boundary, (b) collision, and (c) pairwise costs of our total cost function.

3.2.2 Boundary Cost

For a selected object f;, the boundary cost, Cgoundary, computes the
alignment between the object’s current position and rotation with
its target configuration relative to the nearest boundary (see Figure
4a). The Cpoundary is computed by:

1 T\ =
CBoundary :E | |D(BNear(pi)7 Pi) - D(BNear (piT)v pzT) ||
—_——
target
1 T\ =T
+QHD(BNear(ri)»ri) —D(Byear(F; ), 17 ) ||,
—_—

target

@

where Bpeqr(-) returns the relative position or rotation to the near-
est boundary and D(-) computes the distance between two vectors.
Last, Lp and L are normalization factors.

3.2.3 Collision Cost

The collision cost accounts for the degree of overlap between fur-
niture items rather than a simple binary measure. The cost is
calculated based on the proportion of an object’s colliding area,
ensuring more accurate placement evaluation. This cost consid-
ers two different types of collision: (1) with furniture items that
have been already placed in the living room environment (f7™ €
{f™, ... fi™}) and (2) compose the current configuration of the
layout and with the boundary (by € {by,...,bx}) of the living room
(see Figure 4b). We compute the collision cost as follows:

L (O ™) N(fi,bx)
Ceotision = - ( ’ > 5 3
Cottion = 1, ( ) > TEAm ®

K

)y

k=1

where N(f;, f;"") and N(f;,by) calculate the overlapping area be-
tween two convex polygons (i.e., between two furniture f; and f;”v,
and between a furniture f; and a boundary by, respectively) using
the Sutherland-Hodgman clipping algorithm.! Last, the A(f;) is a
function that returns the total areas the furniture f; occupies.

3.2.4 Pairwise Cost

The pairwise cost considers the relationships between furniture
items in the scene, based on a dominant/subordinate hierarchy.
For this cost term, we adopted the relationship model proposed by
Zhang et al. [52]. Thus, based on our preliminary study (see Sec-
tion 3.1), we computed the target relative position and rotations.
Specifically, given the layouts from our preliminary study, we ap-
plied k-means clustering to the observed relative positions and ro-
tations of each dominant-subordinate furniture pair. For each re-
sulting cluster, we computed the median relative position (f)iTj) and

'https://rosettacode.org/wiki/Sutherland-Hodgman_
polygon_clipping
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rotation (f'g}) to identify representative spatial configurations while
reducing the influence of outliers in terms of pair relations. This
clustering process allowed us to capture common layout patterns
from the preliminary designs, which inform the target configura-
tions. Then, we defined a relationship rl;; = {(f)iTj,f'iTj), -} asa
set of cluster median position and rotation, where f; is the domi-
nant item and f; the subordinate one. For each dominant item f;,
we defined a set RL; = {rl;j, rly,--- }, which includes all spatial re-
lationships that f; has with other subordinate items.

Once the virtual agent decides to pick the furniture item f;, it
will check the minimal distance between that furniture item and its
dominant/subordinate counterpart in the scene (see Figure 4c). So,
the pairwise cost is calculated as:

1

J
RL L WS,

=

“

CPair =

where PW (f;, fi™) represents the cost of the pairwise relationship
between f; and ff"". PW considers the distance difference between
the furniture item position p; and any of the target position f)iTj in
reference to the related furniture item position p; when f]‘?"" is part
of relationship RL;. For the rotation component, we calculate the
difference between the current rotation of the furniture item and its
ideal rotation relative to the related furniture item. The PW function
is defined by the following statement:

£-D(pip, +DL;)
PW(fi, f{™) = + £ D(xi,xj +
0 otherwise.

if RL; in relation to f;”"

3.2.5 Optimization

Our system updates the virtual agent’s decisions by optimizing the
placement of furniture items according to our total cost functions.
This optimization process takes the cost terms along with their re-
spective weights as input. Rather than using complex sampling
techniques, we implemented a simple grid-based approach that bal-
ances computational performance with solution quality. The algo-
rithm evaluates 100 positions distributed uniformly across a regular
grid spanning the living room floor, with rotation angles consid-
ered at 45-degree intervals: [0°,45°,90°, ...,315°]. Our controlled
testing showed that the regular grid with 100 samples provided
sufficient space coverage to generate reasonable furniture arrange-
ments while maintaining real-time responsiveness. By calculating
the total cost for each position-rotation combination, the system
identified the option with the lowest cost as the optimal placement
decision, following the optimization pipeline shown in Figure 1.
Last, we should note that we assigned weights to specify the influ-
ence of each cost on the total cost function. The decision on the
weights was based on a trial-and-error evaluation. We assigned



WBoundary = -20, Weoliision = -80, and wpyiy = 1.00 to prioritize
avoiding furniture item overlap and emphasize the correct spatial
arrangement between dominant/subordinate furniture.

3.3 Virtual Reality Application

Virtual Environment. The virtual environment is divided into
two sections: an inner area that represents the living room floor,
surrounded by transparent boundaries where the user and virtual
agent place furniture, and an outer semi-transparent area that ini-
tially holds all furniture items, along with the virtual agent and user
(see Figure 3b). The goal is for the virtual agent and user to co-
design the living room layout by placing each furniture item from
the outer area into the inner one. The inner area measures 7 x 12
meters. We selected 19 living room-related furniture items to create
a cozy layout (see Figure 3a). These items come from Zhang et al.’s
[52] 3D scene dataset.

Virtual Agent. The virtual agent is a 3D animated character
that navigates the environment using the A* path-finding algorithm
[21] (see Figure 5). It can perform two actions: (1) select an object
and (2) walk to its destination. After making a decision, the agent
moves toward the selected furniture item, grabs it, and then walks
toward the computed item’s position in the inner area to place it,
updating the layout. Once the item is placed, the agent returns to its
waiting position.

Figure 5: The virtual agent is moving toward placing a furniture
item. The green line represents a collision-free path computed us-
ing the A* algorithm, and the blue circle represents the target posi-
tion for the furniture item.

Interaction Mechanism. Users could grab and release furni-
ture items and navigate through the scene. They could manipulate
the position of furniture items via distance grabbing using a raycast-
based interaction (see Figure 6a). For locomotion, users could tele-
port or use continuous movement through the controller’s joystick.
To enhance spatial awareness during the design process, we imple-
mented a top-view map on the user’s wrist. This minimap offered
a real-time overview of the living room layout, showing the current
furniture positions, the user, and the virtual agent (see Figure 6b).
This feature addressed a common challenge in VR design where
users have a limited field of view while immersed [12].

We established a turn-taking approach between the user and the
virtual agent for the co-design task (see Figure 1). During the user’s
turn, the agent remained stationary in a predefined waiting position.
The user could insert a new furniture item or edit an existing one.
Once the item was placed in the inner area and no further adjust-
ments were made within a timeout period of five seconds, the user’s
turn concluded. During the agent’s turn, object manipulation was
disabled for the user, who could only observe the agent’s actions.
The virtual agent, following a predefined co-design strategy (see
Section 4.3 for experimental conditions), selected and placed a fur-
niture item in the living room. Upon completing its action, the agent
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returned to the waiting position, allowing the user’s turn. This turn-
taking process continued until all furniture items had been placed.

T
-

= |

(@ (b)
Figure 6: (a) The user grabs a furniture item. (b) The top-view map
feature allows for visualization of the living room environment.

4 USER STUDY
4.1 Participants

We calculated the sample size based on an a priori power analysis
with G*Power v. 3.1 software [14]. For our within-group study,
which includes three conditions (i.e., random, template, and opti-
mization), with an effect size f = .30, a nonsphericity correction
&£ = .80, and an o = .05, to achieve an 80% power (1 — f3 error
probability), the analysis recommended at least 23 participants. We
recruited 24 participants (13 male and 11 female; age: M = 27.25,
SD = 3.35) by sending emails and distributing flyers on our univer-
sity campus.

4.2 Apparatus

We used Unity game engine version 2021.3.34f1 to develop the
project for the Meta Quest 2 head-mounted display (HMD). We
used an Alienware computer (Intel i7, 32GB RAM, and NVIDIA
GeForce RTX 2080) for our implementation and user study.

4.3 Experimental Conditions

We evaluated the proposed optimization against two other co-
design strategies described below:

* Random (RC): Regardless of where the user positioned the
furniture, the virtual agent placed furniture items by randomly
selecting the furniture item and its target position in the vir-
tual environment. We included this condition to establish a
baseline for agent behavior without spatial reasoning or user
input responsiveness.

Template (TC): The virtual agent selected furniture items
randomly but placed them according to a predefined layout
(see supplementary material document) created by an experi-
enced designer. While users could freely arrange items, the
agent did not adapt to these changes and continued following
the structured placement pattern. This approach ensured con-
sistent item positioning and allowed us to assess the impact
of predefined layouts on collaboration, independent of user-
informed design changes.

Optimization (OC): The virtual agent selected furniture
items randomly but determined their placement based on the
proposed total cost function. Thus, the virtual agent dynami-
cally calculated the best position for each furniture item. This
approach allowed the virtual agent to adjust its placement de-
cisions in response to the evolving design.

4.4 Ratings and Measurements

Self-reported Ratings. We collected data from several scales
to evaluate the human-virtual agent co-design process. Co-presence
and attentional allocation were measured using scales from Biocca



et al. [4]. Subjective mental workload was assessed through
NASA’s task load index (TLX) [22]. We also employed the system
usability scale (SUS) [5] to evaluate the system’s usability across
different conditions. To assess the virtual agent’s awareness (i.e.,
private, public, and surrounding), we adapted scales from Govern
and Marsch [19]. For collaboration, we used the perceived collab-
oration scale by Liu et al. [27], the trust scale by Jian et al. [23],
and a perceived contribution measure inspired by Choi et al. [7].
Finally, we measured performance, enjoyment, frustration, and the
desire for future interaction using items based on Choi et al. [9].

Application Logs. We recorded interaction data from the VR
experience to gain deeper insight into user activity during the co-
design task. Specifically, the logged data included: (1) the total
time spent in the experience (measured in seconds), calculated from
the beginning of furniture placement to the moment users indicated
completion; (2) the number of furniture items placed by the user;
(3) the total number of edits performed by the user, where an edit
is defined as repositioning a furniture item that had already been
placed in the inner area; and (4) the total number of edits the user
made to items initially placed by the virtual agent. We used this last
metric to examine how users responded to the agent’s contributions
and to determine whether their intended design aligned with the
agent’s placements.

4.5 Procedure

Each study session included one researcher and one participant.
The researcher presented the study’s consent form, which our uni-
versity’s Institutional Review Board (IRB) approved. This form
provided detailed information about the study, essential points to
consider, and participants’ rights. We informed each participant
that they could report any discomfort they experienced with the VR
headset and were free to pause, take a break, or withdraw from the
study at any time without consequences. At the start of the study,
the researcher asked the participants to complete a demographic
questionnaire on the computer. Following this, the researcher ex-
plained the study procedure to help the participants understand the
experiment and provided instructions on using the HMD. Partici-
pants then completed a VR warm-up tutorial, where they practiced
interacting with the environment and moving furniture items using
the VR controllers. Prior research suggested that tutorials on VR
controllers enhanced users’ performance, experience, and intrinsic
motivation [24]. We exposed participants to all three conditions in
an order determined by the Latin square ordering method [45] that
balances first-order carry-over (residual) effects across conditions.
In each condition, participants co-designed a living room layout
with the virtual agent. After each condition, the researcher asked
participants to complete a survey on the computer. At the end of
the study, the researcher dismissed the participants. Each session
lasted no more than one hour.

5 RESULTS

For our statistical analyses, we used the three experimental con-
ditions as independent variables, and the self-reported ratings and
logged data as dependent variables. The Q-Q plots of the residuals
and the Shapiro-Wilk test at the 5% level confirmed the normality
of the collected data. Thus, we performed one-way repeated mea-
sures analysis of variance (ANOVA). We used Bonferroni-corrected
estimates for pairwise comparisons to assess the statistically signif-
icant (p < .05) results. We summarize our results in Table 1 and
Table 2.

5.1 Self-reported Ratings
5.1.1 Interaction and Perception of the Virtual Agent
Co-presence. We found a statistically signiﬁcant result

(Wilk’s A = .651, F[2,22] = 5.910, p = .009, N, = .349). The
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post hoc pairwise comparison showed that participants rated their
co-presence lower when we exposed them to the random (M = 3.83,
SD = .88) than the optimization (M = 4.81, SD = 1.05) condition
at p = .006.

Attentional Allocation. We did not find a statistically signifi-
cant result (Wilk’s A = .964, F[2,22] = .406, p = .671, 17[2, =.036).

Perceived Collaboration. We found a statistically significant
result (Wilk’s A = .298, F[2,22] = 25.934, p < .001, nl% =.702).
The post hoc pairwise comparison showed that participants rated
their perceived collaboration higher in the optimization (M = 5.11,
SD = 1.03) than the template (M = 3.99, SD = 1.46; p = .020) and
random (M = 3.11, SD = 1.32; p < .001) conditions.

Trust. We found a statistically significant result (Wilk’s A =
281, F[2,22] = 28.183, p < .001, n2 = .719). The post hoc
pairwise comparisons showed that participants rated their trust in
the random (M = 2.67, SD = .64) lower than in the optimization
(M =3.79, SD = .85; p < .001) and template (M = 3.66, SD = .98;
p < .001) conditions.

Performance. We found a statistically significant result
(Wilk’s A = .316, F[2,22] = 23.766, p < .001, n‘g = .684). The
pairwise comparison showed that participants reported better per-
formed in the optimization (M = 4.88, SD = 1.60) than random
(M =2.08, SD = 1.50; p < .001) condition, and better in the tem-
plate (M =4.21, SD = 1.93) than the random (p < .001) condition.

5.1.2 Virtual Agent Awareness

Private Awareness. The analysis revealed a statistically sig-
nificant result (Wilk’s A = .384, F[2,22] = 17.648, p < .001, 771% =
.616). The post hoc pairwise comparisons showed that participants
rated the virtual agent’s private awareness significantly higher in the
optimization (M =4.40, SD = 1.47) than in the template (M = 3.29,
SD = 1.42; p=.023) and random (M = 2.23, SD = 1.24; p < .001)
conditions. Participants also rated the template significantly higher
than the random (p = .022) condition.

Public Awareness. The analysis revealed a statistically sig-
nificant result (Wilk’s A = .308, F[2,22] = 24.754, p < .001,
nI% =.692). The post hoc pairwise comparison showed that partici-
pants rated the virtual agent’s public awareness significantly higher
in the optimization (M = 3.98, SD = 1.65) than in the template
(M =2.88, SD = 1.50; p =.048) and random (M = 1.66, SD = .68;
p < .001) conditions. Participants also rated the virtual agent’s pub-
lic awareness significantly higher in the template than in the random
(p = .004) condition.

Surrounding Awareness. The analysis revealed a statistically
significant result (Wilk’s A = .246, F[2,22] = 33.627, p < .001,
nﬁ = .754). The post hoc pairwise comparison showed that partic-
ipants rated the virtual agent’s surrounding awareness significantly
lower in the random (M = 2.10, SD = 1.12) than in the optimiza-
tion (M = 4.65, SD = 1.48; p < .001) and template (M = 3.81,
SD =1.61; p < .001) conditions.

5.1.3 User Experience

NASA-TLX. The analysis revealed a statistically significant re-
sult (Wilk’s A = .731, F[2,22] =4.055, p = .032, nl% =.269). Post
hoc analysis showed that participants reported a lower subjective
mental workload in the optimization (M = 26.42, SD = 8.42) than
in the random (M = 34.99, SD = 14.53) condition.

SUS. The analysis revealed a statistically significant result
(Wilk’s A = .668, F[2,22] = 5.465, p = .012, nl% = .332). The
post hoc pairwise comparison showed that participants rated the
optimization (M = 77.71, SD = 13.59) significantly higher than the
random (M = 58.85, SD = 21.30; p = .008) condition.



Table 1: Detailed results of our study for the self-reported ratings (we present significant results with bold font).

1) (2) (3) “) (5) (6)

(7)

() ©) (10) (1) (12) (13) (14)

M SO M SO M SO M SO M SO M SO M SO M SO M SO M SO M SO M SO M SO M SD
RC 383 .8 34 89 311 132 267 .60 208 1.5 223 124 166 .68 21 148 3499 1453 58.85 21.3 2.67 1.86 429 207 271 181 3.38 208
TC 444 99 328 54 399 145 3.66 98 421 193 329 142 288 15 381 161 276 1126 70.21 1557 454 177 3.04 181 429 1.65 559 1
OC 481 1.05 324 55 511 103 379 85 488 1.6 44 147 398 165 4.65 1.12 2642 842 7771 1359 521 147 296 14 496 155 585 .90
F 5.910 406 25.934 28.183 23.766 17.648 24.754 33.627 4.055 5.465 15.478 3.328 11.919 12.81
P 009 671 <.001 <.001 <.001 <.001 <.001 <.001 032 012 <.001 .055 <.001 <.001
17,% 349 .036 702 719 .684 .616 692 754 .296 332 585 232 52 538

df =2,errordf =22

(1) Co-presence, (2) Attention, (3) Perceived Collaboration, (4) Trust, (5) Performance, (6) Private Awareness, (7) Public Awareness, (8) Surrounding Awareness, (9) TLX, (10) SUS, (11)

Enjoyment, (12) Frustration, (13) Desire for Future Interaction, and (14) Reasonable Design.

Enjoyment. The analysis revealed a statistically significant re-
sult (Wilk’s A = 415, F[2,22] = 15.478, p < .001, 77,% = .585).
The post hoc pairwise comparisons showed that participants rated
their enjoyment significantly higher in the optimization (M = 5.21,
SD = 1.47) than in the random (M = 2.67, SD = 1.86; p < .001)
condition and in the template (M = 4.54, SD = 1.77) than in the
random (p = .004) condition.

Frustration. The analysis did not yield a statistically signifi-
cant result (Wilk’s A = .768, F[2,22] = 3.328, p = .055, nI% =
.232). Although the optimization (M = 2.96, SD = 1.40) and tem-
plate (M =3.04, SD = 1.81) conditions had lower frustration scores
compared to the random (M = 4.29, SD = 2.07) condition.

Desire for Future Interaction. The analysis revealed a sta-
tistically significant result (Wilk’s A = .480, F[2,22] = 11.919,
p < .001, 77;% = .520). The post hoc comparison showed that par-
ticipants expressed more desire for future interaction in the opti-
mization (M = 4.96, SD = 1.55) than in the random (M = 2.71,
SD = 1.81; p < .001) condition. Moreover, participants reported
significantly higher desire for future interaction in the template
(M =4.29, SD = 1.65) than in the random (p = .005) condition.

5.1.4 Design Satisfaction

Reasonable Design. The analysis revealed a statistically sig-
nificant result (Wilk’s A = .462, F[2,22] = 12.810, p < .001, Tl,% =
.538). The post hoc pairwise comparisons showed that participants
rated the random (M = 3.38, SD = 2.08) significantly less reason-
able than both the optimization (M = 5.85, SD = .90; p < .001) and
the template (M = 5.59, SD = 1.00; p < .001) conditions.

5.2 Application Logs

Table 2: Detailed results of our study for the application logs (we
present significant results with bold font).

o) @ 3 4
M SD M sOD M SD M SD
RC 40414 168.11 542 250 794 511 717 5.09
TC 38775 14190 667 216 529 435 233 2.04
OC 37137 15299 725 145 413 310 229 1.73
F 466 5.035 4.888 10.459
P 634 016 018 <.001
n? 041 314 .308 487

df =2,errordf =22

(1) Time, (2) Items Placed by User, (3) Corrections (All Items Edited by User),
and (4) Corrections to Virtual Agent (Virtual Agent Items Edited by User).

Time. The analysis did not reveal a statistically significant re-
sult (Wilk’s A = .959, F[2,22] = .466, p = .634, 775 =.041).
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ltems Placed by User. The analysis revealed a statistically
significant result (Wilk’s A = .686, F[2,22] = 5.035, p = .016,
T[I% =.314). The post hoc pairwise comparisons showed that partici-
pants placed more items in the optimization (M = 7.25, SD = 1.45)
than in the random (M = 5.42, SD = 2.50; p = .014) condition.
They also placed more items in the template (M = 6.67, SD =2.16)
than in the random (p = .014) condition.

Corrections (All Items Edited by User). The analysis re-
vealed a statistically significant result (Wilk’s A = .692, F[2,22] =
4.888, p = .018, n; = .308). The post hoc pairwise comparison
showed that participants edited significantly more items in the ran-
dom (M = 7.94, SD = 5.11) than in the optimization (M = 4.13,
SD = 3.10; p = .014) condition.

Corrections to Virtual Agent (Virtual Agent ltems Edited
by User). The analysis revealed a statistically significant result
(Wilk’s A = .513, F[2,22] = 10.459, p < .001, nf, = .487). The
post hoc pairwise comparisons showed that participants edited sig-
nificantly more of the virtual agent’s placements in the random con-
dition (M = 7.17, SD = 5.09) compared to both the optimization
condition (M = 2.29, SD = 1.73; p < .001) and the template con-
dition (M = 2.33, SD = 2.04; p < .001).

5.3 AQualitative Data

To complement our findings, we also included an optional open-
ended question to collect participants’ impressions of the overall
experience. Eight participants commented on the varying levels of
the virtual agent’s intelligence and responsiveness they observed.
One participant (P16) noted, “In some conditions, I can see the vir-
tual agent is aware of my actions and responds to them reasonably.”

Six participants expressed awareness of the different virtual
agent behaviors, with one (P4) remarking: “I felt that the last Al
was aware that it was messing things up...” Another (P7) stated:
“Some individuals were not the most intelligent, and I felt like 1
was doing all the work,” suggesting they perceived varying levels
of collaborative engagement across conditions.

Seven participants described the VR interaction in favorable
terms, using words like “fun” (P2 and P17), “interesting” (P6), and
“enjoyable” (P14). One participant (P19) explicitly ranked their ex-
periences numerically, stating: “From best to worst system, I would
rate them as following: 2 [optimization], / [template], and 3 [ran-
dom]” suggesting apparent preference differences among the con-
ditions they encountered.

One participant (P18) commented on the virtual agent’s commu-
nication limitations: “It’s hard to interpret what the virtual char-
acter wants to do by just watching,” suggesting that greater trans-
parency in the virtual agent’s decisions could improve collabora-
tion. Last, another (P22) appreciated the spatial awareness aspects,
stating: “I like that I could see the virtual agent through the map. It
was easy to capture where it is in the scene.”



6 DiscussioN

6.1 RQ1: Interaction and Perception of the Virtual
Agent

We examined how co-design strategies impact participants’ co-
presence, attentional allocation, perceived collaboration, trust, and
performance. We found that structured decision-making improved
both interaction and perceptions of the agent.

Co-presence was significantly higher in the optimization con-
dition compared to the random condition. When the virtual agent
made decisions based on the layout configurations, participants per-
ceived it as more attuned to the environment. They engaged in the
interaction, reinforcing the impression of working with an inten-
tional collaborator. The template condition showed intermediate
co-presence ratings, suggesting that behavioral consistency con-
tributes to co-presence but not as strongly as adaptive responsive-
ness. Thus, our results align with Choi et al. [8] who showed that
virtual agent intelligence enhances the sense of co-presence during
human-virtual agent interaction.

Attentional allocation showed no significant differences across
conditions. Interestingly, participants reported a low rating in this
metric, indicating that participants focused more on the design task
than the virtual agent. Several factors may explain this: the agent
was not programmed to follow the user continuously, so it was not
always in view; the turn-taking structure naturally divided attention
regardless of agent behavior; and the complex spatial nature of the
task likely demanded significant cognitive resources. This aligns
with Biocca et al. [4], who found that task complexity can redirect
attention away from social partners. Future research could employ
eye-tracking to understand attentional patterns during collaborative
design tasks better.

Perceived collaboration showed that the optimization approach
was rated significantly higher than the template and random co-
design strategies. This result aligns with Zhou et al. [56], who
found that nonlinear collaborative frameworks treating Al as an
opinionated collaborator rather than a mere tool significantly en-
hance user engagement in creative design tasks. The human-in-the-
loop nature of the optimization condition exemplifies this balance:
the virtual agent makes context-aware design decisions based on
the user’s choices, contributing meaningfully to the evolving lay-
out. Unlike the template co-design strategy, which follows prede-
termined patterns regardless of user input, or random, the optimiza-
tion co-design strategy of the virtual agent demonstrates a “design
intention inference” [26], which is the ability to understand and
complement human design goals. This decision-making is the crit-
ical factor that elevates perceived collaboration in the optimization
condition, enabling an effective collaborative interaction in VR lay-
out design tasks.

Participants reported higher trust in the optimization condition
than in the random one. The template condition also received sig-
nificantly higher trust ratings than the random condition. This sup-
ports Merritt et al.’s [31] findings on trust development with Al
teammates, where predictability plays a crucial role. Virtual agents
exhibiting purposeful design (i.e., template and optimization con-
dition) behavior were perceived as more reliable partners, suggest-
ing that apparent intentionality is fundamental for establishing trust
during collaborative design.

Performance ratings followed a similar pattern, with participants
rating the agent’s performance significantly higher in the optimiza-
tion than in the random condition, and the template condition was
also rated significantly higher than the random one. This differ-
ential impact of virtual agent behavior on performance perception
aligns with previous research that reported higher user confidence
when Al acted as an active collaborator [34, 52]. The optimization-
based virtual agent created a sense of complementary collaboration
that enhanced perceived performance beyond what either the tem-
plate or random co-design strategies could achieve.

138

6.2 RQ2: Virtual Agent’s Awareness

We also explored how co-design strategies impact perceptions of
virtual agent awareness. Participants attributed different awareness
levels to the virtual agent across conditions.

Private awareness ratings were significantly higher in the opti-
mization condition than in both the template and random condi-
tions. Participants also rated the template condition significantly
higher than the random one, suggesting that agents demonstrat-
ing reasonable decision-making were perceived as more self-aware.
These findings align with Cerekovic et al. [6], who reported that
nonverbal cues and behavioral consistency shape how users infer an
agent’s internal states. Public awareness ratings showed the most
pronounced differences across conditions. The optimization con-
dition received the highest ratings, significantly outperforming the
random strategy, with the template strategy also rated higher than
random. These results indicate that an agent’s ability to place furni-
ture appropriately strongly influences how users perceive its under-
standing of the environment, supporting findings by Ye et al. [48]
regarding situational awareness and environmental responsiveness.

Finally, participants rated the random condition significantly
lower in terms of surrounding awareness compared to the opti-
mization and template conditions. As expected, users perceived
the agents as unaware of their surroundings when they made unrea-
sonable or random placements. This finding aligns with previous
research showing that participants perceived virtual agents as more
aware when they completed tasks correctly [9].

6.3 RQ3: User Experience

We also examined how co-design strategies impact user experience.
Enjoyment, frustration, willingness for future interaction, task load,
and design evaluation all showed significant differences favoring
structured (i.e., template or optimized) virtual agent behavior.

Enjoyment ratings revealed a clear distinction between condi-
tions, with both the optimization and template conditions rated sig-
nificantly more enjoyable than the random condition. This pat-
tern suggests that enjoyment increases with behavioral structure
and user input responsiveness. This finding supports research by
Walsh and Wronsky [40], who found that adaptive Al integra-
tion creates more engaging and satisfying design experiences. The
optimization-based virtual agent’s ability to respond to the evolving
design context induced a more dynamic and rewarding collabora-
tive experience than less responsive approaches.

Task load revealed significantly lower subjective mental work-
load in the optimization condition compared to the random condi-
tion, with the template condition showing intermediate workload
levels not significantly different from either extreme. This reduced
workload can be explained by the fact that predictable and sup-
portive virtual agent behavior minimizes the mental workload re-
sources users must allocate to managing the virtual agent interac-
tions [32]. Similarly, Daronnat et al. [11] found that virtual agents
with predictable behaviors improved performance and reduced cog-
nitive load in real-time collaborative tasks.

System usability ratings were significantly higher for the opti-
mization condition than the random condition, with the template
condition receiving intermediate ratings not significantly different
from either extreme. Optimizing-based decision-making induced
more intuitive interactions, making the system feel more natural and
easier to work with than the template or random co-design strate-
gies. This aligns with You et al. [49], who found that responsive
design tools significantly enhance usability perceptions in VR.

According to our qualitative analysis, several participants ex-
pressed difficulty interpreting the virtual agent’s intentions, sug-
gesting that making the decision-making process more transpar-
ent might enhance collaboration. Furthermore, our findings also
indicated that participants valued the spatial awareness features in



the interface, which helped them track the virtual agent’s position
throughout the collaborative design process.

6.4 RQ4: Design Satisfaction

Ratings on design satisfaction were significantly higher for the op-
timization and template conditions compared to the random condi-
tion. This finding suggests that structured virtual agent behavior,
whether adaptive or predetermined, leads to more satisfactory de-
sign outcomes. This supports research by Yu et al. [50] on auto-
mated furniture layout, demonstrating that algorithmic approaches
considering spatial relationships produce more acceptable designs.
The optimization condition’s slightly higher ratings suggest poten-
tial advantages for adaptive strategies in achieving design coher-
ence, since structured approaches yielded satisfactory results.

6.5 RQ5: User Activity

We also examined how co-design strategies influence user activity.
The logged data revealed distinct interaction patterns that objec-
tively show how different co-design strategies affect collaboration.

Time spent in the environment showed no significant differences
across conditions, suggesting that overall task completion time re-
mained consistent regardless of virtual agent behavior. This indi-
cates that the virtual agent’s co-design strategy primarily affected
the quality rather than duration of the interaction, as VR’s spatial
affordances for layout design were similar across conditions [15].

Participants placed more items in the optimization and template
conditions than in the random condition. This pattern suggests
that working with purposefully behaving virtual agents encourages
more item additions from users. This aligns with research show-
ing that intentional virtual agents boost human engagement in co-
design tasks [35]. This relates to user corrections, which shows
that participants made significantly fewer overall corrections in the
optimization condition than in the random condition, with the tem-
plate condition showing an intermediate number not significantly
different from either extreme. Participants also modified fewer of
the agent’s placements in both the optimization and template con-
ditions compared to the random one. These outcomes suggest that
purpose-driven agent behaviors yielded more acceptable contribu-
tions, reducing the need for user intervention. This aligns with find-
ings from Zhou et al. [56], showing that adaptive virtual agents
contribute more effectively and require fewer adjustments.

Interestingly, the number of corrections to agent-placed items
was similar in the optimization and template conditions, indicating
that both strategies led to comparably acceptable outputs. How-
ever, the lower overall correction count in the optimization condi-
tion suggests that this strategy created a more coherent and satisfac-
tory layout. Participants made fewer edits overall, suggesting that
the optimization strategy supported a more balanced co-design pro-
cess in which both the user and virtual agent made meaningful con-
tributions to the intended layout. This reduction in participant cor-
rections may indicate smoother collaboration with the agent during
the co-design task, as fewer adjustments imply the agent’s choices
were more closely aligned with the user’s design intentions.

6.6

Our findings offer several implications for the design of collabora-
tive virtual agents in VR design environments. First, the positive
user responses to the optimization-based virtual agent suggest that
adaptive behavior can meaningfully enhance collaboration when
grounded in a coherent and transparent design rationale. This high-
lights the need for virtual agents to exhibit algorithmic sophisti-
cation in a way that aligns with the user’s creative intent, thereby
supporting a shared understanding and trust. Second, the consistent
patterns of attentional allocation across conditions point to the value
of structured interaction frameworks, such as turn-taking, in facil-
itating collaborative engagement. Structured protocols help estab-

Implications
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lish clear expectations and coordination between human users and
virtual agents, even when agent behavior varies. Third, although
agent support improved the overall experience, users continued to
adjust the agent’s contributions. This indicates that systems should
be designed to balance automation with user control, allowing for
refinement or override of agent actions without breaking the collab-
orative flow. Finally, the strong relationship between early agent be-
havior and user trust highlights the importance of first impressions
in human-agent collaboration. Designers should prioritize reliable,
competent early interactions to establish a foundation for continued
engagement and cooperation.

6.7 Limitations

Our study had several limitations that should be considered when
interpreting the results. However, these limitations do not invalidate
our findings but rather highlight important directions for future re-
search. First, our simplified grid-based optimization approach con-
strained the virtual agent’s decision-making, which evaluated only
100 positions distributed uniformly across the living room floor,
with rotation angles of 45-degree intervals. This discrete sam-
pling method limits the problem’s search space, reducing the vir-
tual agent’s ability to discover the optimal furniture item placement.
While this approach was computationally efficient and maintained
real-time performance in VR, it could have limited our framework’s
results. Second, while our virtual agent worked and helped us un-
derstand collaborative interactions, other decision-making methods
could result in a more adaptive and responsive virtual agent. Third,
our study utilized a single-viewing perspective, where participants
interacted with the environment at a first-person view level. This
limited viewpoint may affect how users perceive the environment
and make spatial decisions during the collaborative task. Finally,
our study focused on a living room layout task with specific furni-
ture items and constraints. This setting may not generalize to other
design contexts that involve different spatial relationships, aesthetic
considerations, or functional requirements.

7 CONCLUSIONS AND FUTURE WORK

We proposed a human-in-the-loop optimization-based method for
virtual agent decision-making during layout co-design in VR. A
user study compared our proposed optimization method against
random and template co-design strategies and demonstrated that
the optimization approach significantly improved perceived col-
laboration, trust, and co-presence compared to the random con-
dition. Moreover, the virtual agent’s ability to adapt to user ac-
tions and improvise during the evolving design appears to have
created stronger impressions of awareness and intentionality. The
optimization-based approach also reduced subjective mental work-
load while increasing enjoyment and satisfaction with the final de-
sign. Logged data showed that participants made fewer correc-
tions to optimization-based virtual agent placements than those in
the random condition. Based on qualitative feedback, participants
noted varying levels of virtual agent awareness and responsiveness
aligned with our experimental conditions. They described more
positive collaborative experiences with virtual agents demonstrat-
ing purposeful behavior and responsiveness to user actions.

In future work, we argue that more advanced methods incorpo-
rating intention recognition should be explored to improve the vir-
tual agent’s decision-making. By understanding the user’s under-
lying intentions, the system could better guide the agent in making
design choices aligned with user goals. Furthermore, identifying
user perception of the agent’s role in the design (e.g., leading or
subordinate) can be relevant for human-agent collaborations. Addi-
tionally, integrating LLMs could enable natural language commu-
nication between the user and the virtual agent, allowing them to
discuss and decide on design decisions collaboratively.
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